
Gap structure in noncentrosymmetric superconductors

K. V. Samokhin1 and V. P. Mineev2

1Department of Physics, Brock University, St. Catharines, Ontario, Canada L2S 3A1
2Commissariat à l’Energie Atomique, DSM/DRFMC/SPSMS, 38054 Grenoble, France

�Received 9 November 2007; revised manuscript received 15 January 2008; published 18 March 2008�

Gap structure in noncentrosymmetric superconductors with spin-orbit band splitting is studied using a
microscopic model of pairing mediated by phonons and/or spin fluctuations. The general form of pairing
interaction in the band representation is derived, which includes both the intraband and interband pairing terms.
In the case of isotropic interaction �in particular, for a BCS-contact interaction�, the interband pairing terms
vanish identically at any magnitude of the band splitting. The effects of pairing interaction anisotropy are
analyzed in detail for a metal of cubic symmetry with strong spin-orbit coupling. It is shown that if phonons
are dominant then the gaps in two bands are isotropic, nodeless, and have in general different amplitudes.
Applications to the Li2�Pd1−x ,Ptx�3B family of noncentrosymmetric superconductors are discussed.
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I. INTRODUCTION

Superconducting materials without inversion symmetry
have recently become a subject of considerable interest, both
experimental and theoretical. Starting from CePt3Si �Ref. 1�,
the list of noncentrosymmetric superconductors has grown to
include UIr �Ref. 2�, CeRhSi3 �Ref. 3�, CeIrSi3 �Ref. 4�,
Y2C3 �Ref. 5�, Li2�Pd1−x ,Ptx�3B �Ref. 6�, KOs2O6 �Ref. 7�,
and other compounds. In most cases, the fundamental ques-
tions about the gap symmetry and the pairing mechanism
remain unresolved.

The spin-orbit �SO� coupling of electrons with a noncen-
trosymmetric crystal lattice lifts spin degeneracy of the elec-
tron energy bands almost everywhere, which has important
consequences for superconductivity: In the limit of strong
SO coupling, the Cooper pairing between the electrons with
opposite momenta occurs only if they are from the same
nondegenerate band. This scenario is realized in CePt3Si,
where the SO band splitting exceeds the critical temperature
by orders of magnitude.8 The same is likely to be the case in
other materials, for instance in Li2�Pd1−x ,Ptx�3B; see Ref. 9.

The pairing interaction between electrons is most natu-
rally introduced using the exact band states,8,10–12 which take
into account all the effects of the crystal lattice potential and
the SO coupling, see Sec. II. In the strong SO coupling limit,
the order parameter is represented by a set of complex func-
tions, one for each band, which makes the theory of noncen-
trosymmetric superconductors similar to that of usual multi-
band superconductors, see Ref. 13. An alternative approach
based on the representation of the pairing interaction in terms
of the pure spinor states unaffected by the SO coupling was
developed in Refs. 14 and 15.

In a phenomenological multiband pairing Hamiltonian,
the relative strength of pairing in different bands can be ar-
bitrary. In this article, we go beyond the phenomenological
description and study the gap structure in noncentrosymmet-
ric superconductors under some fairly general assumptions
about the microscopic mechanism of pairing. Specifically,
we consider the interaction mediated by bosonic excitations
�phonons and/or spin fluctuations�. Starting with a micro-
scopic expression for a momentum and frequency dependent

pairing interaction, we derive the general form of the pairing
interaction in the band representation, which contains both
the intraband and interband pairing terms. The latter is
shown to vanish identically in the case of isotropic BCS-
contact interaction for any magnitude of the SO band split-
ting; see Sec. III. In general, the interband pairing is absent
only in the limit of large band splitting; see Sec. IV.

In Sec. V, we present a detailed analysis of the possible
gap structures in noncentrosymmetric superconductors of cu-
bic symmetry, in a model which includes both the phonon
and spin-fluctuation mediated interactions. The Conclusion
contains a discussion of our results in the context of
Li2�Pt1−x ,Ptx�3B experiments.

II. BASIC DEFINITIONS

The Hamiltonian of noninteracting electrons in a noncen-
trosymmetric crystal has the following form:

H0 = �
k

��0�k���� + ��k�����ak�
† ak� = �

k
�
�=�

���k�ck�
† ck�,

�1�

where � ,�= ↑ ,↓ are spin indices, � are the Pauli matrices,
���k�=�0�k�+��	�k�� are the band dispersion functions, and
the sum over k is restricted to the first Brillouin zone. In Eq.
�1� and everywhere below, summation over repeated spin
indices is implied, while summation over the band indices is
always shown explicitly. The SO coupling of electrons with
the crystal lattice is described by the pseudovector ��k�,
which satisfies ��−k�=−	�k� and �g���g−1k�=��k�, where g
is any operation from the point group G of the crystal; see
the examples below.

The Hamiltonian in the first line of Eq. �1� is diagonalized
by the following transformation:

ak� = �
�=�

u���k�ck�, �2�

with the coefficients
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u↑��k� =��	� + �	z

2�	�
,

u↓��k� = �
	x + i	y

�2������� + �	z�
�3�

forming a unitary matrix û�k�. The Fermi surfaces defined by
the equations ���k�=0 are split, except for the points or lines
where ��k�=0. The band dispersion functions ���k� are in-
variant with respect to all operations from G, and also even
in k due to time reversal symmetry: The states �k ,�� and
K�k ,�� belong to k and −k, respectively, and have the same
energy. Here K= i
̂2K0 is the time reversal operation, and
K0 is the complex conjugation. One can write K�k ,��
= t��k��−k ,��, where t��k�=−t��−k� is a nontrivial phase
factor.10,11 For the eigenstates defined by expressions �3� we
obtain

t��k� = �
	x�k� − i	y�k�
�	x

2�k� + 	y
2�k�

. �4�

The momentum dependence of the SO coupling is deter-
mined by the crystal symmetry. For the cubic group G=O,
which describes the point symmetry of Li2�Pd1−x ,Ptx�3B, the
simplest form compatible with the symmetry requirements is

��k� = 	0k , �5�

where 	0 is a constant. For the point groups containing im-
proper elements, i.e., reflections and rotation-reflections, ex-
pressions become more complicated. In the case of the full
tetrahedral group G=Td, which is relevant for Y2C3 and pos-
sibly KOs2O6, one has

��k� = 	0�kx�ky
2 − kz

2�x̂ + ky�kz
2 − kx

2�ŷ + kz�kx
2 − ky

2�ẑ� . �6�

This is also known as the Dresselhaus interaction,16 and was
originally proposed to describe the SO coupling in bulk
semiconductors of zinc-blende structure. For the tetragonal
group G=C4v, which is relevant for CePt3Si, CeRhSi3 and
CeIrSi3, the SO coupling is given by

��k� = 	��kyx̂ − kxŷ� + 		kxkykz�kx
2 − ky

2�ẑ . �7�

In the purely two-dimensional case, setting 		 =0 one recov-
ers the Rashba interaction,17 which is often used to describe
the effects of the absence of mirror symmetry in semicon-
ductor quantum wells.

Now let us take into account an attractive interaction be-
tween electrons in the Cooper channel, using the basis of the
exact eigenstates of the noninteracting problem. The most
general form of the interaction Hamiltonian the band repre-
sentation is

Hint =
1

2V �
kk�q

�
�1,2,3,4

V�1�2�3�4
�k,k�;q�

� ck+q,�1

† c−k,�2

† c−k�,�3
ck�+q,�4

. �8�

We assume that the q dependence of the pairing interaction is
neglected �see the next section�. The terms with �1=�2 and
�3=�4 describe intraband pairing and the scattering of the

Cooper pairs from one band to the other, while the remaining
terms describe pairing of electrons from different bands. The
above Hamiltonian can be considerably simplified in the ab-
sence of the interband pairing, which is the case if the SO
splitting of the bands, ESO, is large compared with all energy
scales associated with superconductivity. Since the pairing
interaction is effective only inside the shells of width �c �the
cutoff energy� in the vicinity of the Fermi surfaces, one can
set �1=�2=� and �3=�4=��, and obtain

Hint =
1

2V �
kk�q

�
���

V����k,k��ck+q,�
† c−k,�

† c−k�,��ck�+q,��, �9�

where

V����k,k�� = t��k�t
��
* �k��Ṽ����k,k�� . �10�

The pairing amplitudes Ṽ��� are even in both k and k� �due
to the anticommutation of fermionic operators� and also in-

variant under the point group operations: Ṽ����g
−1k ,g−1k��

= Ṽ����k ,k��.18

In the case of large SO band splitting, the order parameter
has only intraband components. It is uniform �in the absence
of external fields� and can be represented in the form


��k�= t��k�
̃��k�. The gap functions 
̃� transform accord-
ing to one of the even irreducible representations of the point
group and satisfy the following equations:


̃��k� = − T�
n

�
��

 d3k�

�2��3 Ṽ����k,k��

�

̃���k��

�n
2 + ���

2 �k�� + �
̃���k���2
. �11�

The expression on the right-hand side converges due to the
energy cutoff at �c.

III. BCS MODEL

Let us calculate the pairing amplitudes and the gap func-
tions in a simple BCS-like model, in which the attractive
interaction is both instantaneous in time and local in space:

Hint = − V
 d3r �↑
†�r��↓

†�r��↓�r��↑�r�

= −
V

4

 d3r�i
2����i
2�	�

† ��
†�r���

†�r��	�r����r� ,

�12�

where V�0. Using the band representation of the field op-
erators,

���r� =
1

�V�
k,�

u���k�eikrck�, �13�

we obtain the pairing Hamiltonian in the form �8� with
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V�1�2�3�4
�k,k�� = −

V

2
�i
2����i
2�	�

† u
��1

* �k�u
��2

*

��− k�u	�3
�− k��u��4

�k�� .

Here we neglected the difference between u����k+q� and
u����k�, which is O�q /kF�. In conventional centrosymmet-
ric superconductors, we have q /kF���kF�−1�1 �� is the cor-
relation length�. In the noncentrosymmetric case, the above
estimate might not work and the q dependence of the pairing
interaction might be more important, leading, for instance, to
the Lifshitz invariants in the free energy8,19 and a spatial
modulation of the order parameter even in the absence of
external fields. We leave this issues to a separate publication.

Using the identities

u���− k� = t
�
*�k��i
2���u

��
* �k� , �14�

and also the unitarity of the matrix û�k�, we obtain for the
pairing potential:

V�1�2�3�4
�k,k�� = −

V

2
t�2

�k�t
�3

* �k����1�2
��3�4

. �15�

Therefore, interband pairing is absent in the BCS model for
any strength of the SO coupling. Comparing this expression
with Eq. �10�, one can see that both the intraband pairing and
the pair scattering between the bands are characterized by the

same coupling constant: Ṽ����k ,k��=−V /2. The pairing sym-
metry is isotropic, and it follows from Eqs. �11� that the gap

functions are the same in both bands: 
̃+�k�= 
̃−�k�=�. This
is not surprising, since the local interaction �12� cannot lead
to any k dependence of the gaps.

The critical temperature is given by Tc
= �2eC /���ce

−1/NFV, where C�0.577 is Euler’s constant, NF

= �N++N−� /2, and N� is the Fermi-level density of states in
the �th band. Although this has the usual BCS form, the
superconductivity is non-BCS, because the order parameter
resides in two nondegenerate bands, with Tc and � indepen-
dent of the band splitting and the difference between N+ and
N−. One can show that both the critical temperature and the
gap magnitude are not affected by isotropic scalar
impurities.20

IV. INTERACTION MEDIATED BY BOSONIC
EXCITATIONS

Now we investigate a more general model, in which the
pairing is assumed to be due to the exchange of some
bosonic excitations. We consider two types of excitations:
Scalar �phonons�, which couple to the electron density ��r�
=��

†�r����r�, and pseudovector �spin fluctuations�, which
couple to the electron spin density s�r�=��

†�r�������r�. Us-
ing the standard functional-integral representation of the par-
tition function of the system, we obtain the following term in
the fermionic action describing an effective two-particle in-
teraction between electrons:

Sint =
gph

2

2

 dx dx���x�D�x − x����x��

+
gsf

2

2

 dx dx�si�x�Dij�x − x��sj�x�� , �16�

where x= �r ,�� is a shorthand notation for the coordinates in
real space and the Matsubara time, 
dx�. . .�=
dr
0

�d��. . .�,
gph and gsf are the coupling constants of electrons with
phonons and spin fluctuations, while D�x−x�� and Dij�x
−x�� are the phonon and spin-fluctuation propagators, re-
spectively. The spin fluctuations can be associated either
with the localized spins, if such are present in the system, or
with the collective spin excitations of the itinerant electrons
�paramagnons�.21 In the latter case, Dij�x−x�� can be ex-
pressed in terms of the electron dynamical spin susceptibility
�ij�q ,��. In general, the interaction �16� is nonlocal both in
space and time. The BCS-contact Hamiltonian �12� is recov-
ered when the spin fluctuations are neglected and gph

2 D�r ,��
is replaced by -V��r�����.

In the momentum-frequency representation, Eq. �16�
yields the following pairing action:

Sint =
1

2�
�
kk�q

�gph
2 D�k − k�������	 + gsf

2 Dij�k − k��
��
i 
�	

j �

� ā��k + q�ā��− k�a	�− k��a��k� + q� , �17�

where �=�V is the space-time volume, ā��k� and a��k� are
Grassmann fields, k= �k ,�n�, q= �q ,�m�, and �n= �2n+1��T
and �m=2m�T are the fermionic and bosonic Matsubara fre-
quencies, respectively. We assume that the conditions of the
Migdal theorem are fulfilled, and also neglect the frequency
renormalization, which corresponds to the weak-coupling
limit of the Eliashberg theory. The theory developed below
should work, at least qualitatively, even for such materials as
CePt3Si, in which strong electron correlations are responsible
for a heavy-fermion behavior and the above assumptions
might be inapplicable.

The phonon propagator is real and even in both frequency
and momentum, D�k−k��=D�k�−k�, and can therefore be
written as follows:

D�k − k�� = Dg�k,k�� + Du�k,k�� , �18�

where the first term on the right-hand side, Dg�k ,k��
= �D�k−k��+D�k+k��� /2, is even in both k and k�, while the
second term, Du�k ,k��= �D�k−k��−D�k+k��� /2, is odd in
both k and k�.

The spin-fluctuation propagator satisfies Dij�k−k��
=D ji�k�−k� and can be broken up into the symmetric and
antisymmetric in ij parts. Representing the latter in terms of
a dual vector R, we obtain

Dij�k − k�� = Dij
g �k,k�� + Dij

u �k,k�� + ieijlRl�k − k�� , �19�

where the first �second� term on the right-hand side is an
even �odd� function of k and k�, while Ri�k−k��=−Ri�k�
−k�. The antisymmetric component of the spin-fluctuation
propagator is associated with the Dzyaloshinskii-Moriya
interaction.22 It is absent in the centrosymmetric case, due to
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the additional symmetry Dij�k−k��=Dij�k�−k�.
After some straightforward algebra �see the Appendix�,

the action �17� takes the following form:

Sint =
1

2�
�
kk�q

V��	��k,k��ā��k + q�ā��− k�

� a	�− k��a��k� + q� , �20�

where the pairing interaction is represented as a sum of the
k-even, k-odd, and mixed-parity terms: V=Vg+Vu+Vm. The
even contribution is

V��	�
g �k,k�� = vg�k,k���i
2����i
2�	�

† , �21�

where

vg�k,k�� =
1

2
�gph

2 Dg�k,k�� − gsf
2 trD̂g�k,k��� . �22�

The odd contribution is

V��	�
u �k,k�� = vu,ij�k,k���i
i
2����i
 j
2�	�

† , �23�

where

vu,ij�k,k�� =
1

2
�gph

2 Du�k,k�� + gsf
2 trD̂u�k,k����ij − gsf

2 Dij
u �k,k�� .

�24�

Finally, the mixed-parity contribution is

V��	�
m �k,k�� = vm,i�k,k���i
i
2����i
2�	�

† + vm,i�k�,k�

��i
2����i
i
2�	�
† , �25�

where

vm,i�k,k�� =
gsf

2

2
�Ri�k − k�� + Ri�k + k��� . �26�

The first term on the right-hand side of Eq. �25� is odd in k
and even in k�, while the second term is even in k and odd in
k�.

We would like to note that expressions �21�, �23�, and
�25� have completely general form in the sense that they do
not rely on our assumptions about boson-mediated interac-
tions and exhaust all possible spin structures of the pairing
amplitude. Under the point group operations g, the coeffi-
cients vg, vu,ij, and vm transform like a scalar, a second-rank
tensor, and a pseudovector, respectively, and satisfy the in-
variance conditions vg�g−1k ,�n ;g−1k� ,�n��
=vg�k ,�n ;k� ,�n��, etc. By analogy with the theory of super-
conductivity in centrosymmetric compounds, see, e.g., Ref.
24, Eqs. �21� and �23� correspond to spin-singlet and spin-
triplet pairing channels respectively, while Eq. �25� describes
singlet-triplet mixing. The possibility of singlet-triplet mix-
ing due to the Dzyaloshinskii-Moriya interaction in the static
case was pointed out in Ref. 23.

Next, we use Eqs. �2� to transform the pairing action into
the band representation. Using identities �14�, we obtain the
transformation rules for the pair creation operators in the
spin-singlet and spin-triplet channels

�i
2���ā��k + q�ā��− k� = − �
�1,2

t�2
�k���1�2

c̄�1
�k + q�c̄�2

�− k� ,

�i�
2���ā��k + q�ā��− k� = − �
�1,2

t�2
�k���1�2

�k�

�c̄�1
�k + q�c̄�2

�− k� ,

where

�̂i�k� = û†�k�
̂iû�k� . �27�

Inserting these in Eq. �20�, we obtain

Sint =
1

2�
�
kk�q

�
�1,2,3,4

V�1�2�3�4
�k,k��

� c̄�1
�k + q�c̄�2

�− k�c�3
�− k��c�4

�k� + q� , �28�

where

V�1�2�3�4
�k,k�� = t�2

�k�t
�3

* �k��Ṽ�1�2�3�4
�k,k�� , �29�

and

Ṽ�1�2�3�4
�k,k�� = vg�k,k����1�2

��3�4

+ vu,ij�k,k���i,�1�2
�k�� j,�3�4

�k��

+ vm,i�k,k���i,�1�2
�k���3�4

+ vm,i�k�,k���1�2
�i,�3�4

�k�� . �30�

The pairing amplitudes satisfy the following symmetry prop-
erties:

Ṽ�2�1�3�4
�− k,k�� = �1�2Ṽ�1�2�3�4

�k,k�� ,

Ṽ�1�2�4�3
�k,− k�� = �3�4Ṽ�1�2�3�4

�k,k�� .

To obtain these, we used the anticommutation of the Grass-
mann fields in Eq. �28� and also the expressions �4� for the
phase factors in Eq. �29�.

It follows from Eq. �30� that, in general, all possible chan-
nels are present in the pairing interaction, including inter-
band pairing. The latter is absent, for any magnitude of the
SO band splitting, if the odd harmonics of the bosonic propa-
gators are negligible, so that vu,ij�k ,k��=0 and vm,i�k ,k��=0.
This happens, in particular, for a fully isotropic interaction,
in which case vg�k ,k��=vg��n ,�n��.

We are particularly interested in the limit of large SO
band splitting, which is relevant for the majority of noncen-
trosymmetric superconducting materials. In this limit, we set
�1=�2=� and �3=�4=�� in Eq. �30� �the case of arbitrary
band splitting, with both intra- and interband components of
the order parameter present, will be considered in a separate
publication�. Since ���=��̂�k�, the pairing action becomes
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Sint =
1

2�
�
kk�q

�
���

t��k�t
��
* �k��Ṽ����k,k��

� c̄��k + q�c̄��− k�c���− k��c���k� + q� , �31�

where

Ṽ����k,k�� = vg�k,k�� + ���vu,ij�k,k��	̂i�k�	̂ j�k��

+ �vm�k,k���̂�k� + ��vm�k�,k��̂�k�� . �32�

This expression, together with Eqs. �22�, �24�, and �26� re-
lates the amplitudes of the intraband pairing and the inter-
band pair scattering to the bosonic excitation spectra. Note

that Ṽ����k ,k�� is even in both k and k�. Treating the inter-
action �31� in the mean-field approximation, see, e.g., Ref.
24, one introduces the order parameters 
��k�
= t��k�
̃��k ,�n�, where, due to the symmetry of the pairing

amplitudes, 
̃��−k ,−�n�= 
̃��k ,�n�.

A. Weak coupling model

In order to make progress, we approximate the frequency
dependence of the pairing amplitudes by an anisotropic
“square-well” model:25

Ṽ����k,k�� = Ṽ����k,k�����c − ��n�����c − ��n��� , �33�

where ��x� is the step function, �c is the frequency cutoff,

and Ṽ����k ,k�� depend on the directions of k and k� near the
corresponding Fermi surfaces. The approximation �33� has
been used both for conventional phononic pairing interaction
�see Ref. 25�, and also for spin-fluctuation mediated interac-
tion �see Ref. 26�. The “square-well” decomposition also

holds for the gap functions: 
̃��k ,�n�= 
̃��k����c− ��n��, so
that the energy of quasiparticle excitations in the �th band is
given by

E��k� = ���
2�k� + �
̃��k��2. �34�

The gap functions satisfy Eqs. �11�, in which the Matsubara
sum is cut off at �c.

The pairing amplitude given by the matrix Eq. �32� is
invariant under all operations from the crystal point group G,

therefore Ṽ����g
−1k ,g−1k��= Ṽ����k ,k��. Therefore, the mo-

mentum dependence of each matrix element can be repre-
sented as a sum of the products of the basis functions of
irreducible representations of G. In general, the basis func-
tions are different for each matrix element. Neglecting this
complication the pairing amplitude can be factorized as fol-
lows:

Ṽ����k,k�� = − �
a

V���
a �

i=1

da

�a,i�k��
a,i
* �k�� , �35�

where a labels the irreducible representations �of dimension-
ality da� of G, which correspond to pairing channels of dif-
ferent symmetry, with �a,i�k� being the even basis
functions.24 The coupling constants V���

a form a Hermitian

matrix, which becomes real symmetric if the basis functions
are real. Keeping only the irreducible representation � which
corresponds to the maximum critical temperature, the gap
functions take the form


̃��k� = �
i=1

d�

��,i�i�k� , �36�

and ��,i are the superconducting order parameter compo-
nents in the �th band. The basis functions are assumed to
satisfy the following orthogonality conditions:
��

i
*�k�� j�k���=�ij, where the angular brackets denote the av-

eraging over the �th Fermi surface.
Linearizing the gap equations �11� we obtain the follow-

ing expression for the critical temperature:

Tc =
2eC

�
�ce

−1/g, �37�

where

g =
g++ + g−−

2
+��g++ − g−−

2
�2

+ g+−g−+ �38�

is the effective coupling constant, and

g��� = V���N��. �39�

While the critical temperature is the same for all d� compo-
nents of ��, the gap structure in the superconducting state
below Tc, see Eq. �36�, is determined by the nonlinear terms
in the free energy, which essentially depend on the symmetry
of the dominant pairing channel.

V. PAIRING SYMMETRY IN A CUBIC CRYSTAL

In the case of isotropic pairing interaction, one can write
vg�k ,k��=vg��n ,�n��=−Vg���c− ��n�����c− ��n��� in the
square-well approximation. In this way, one recovers the
BCS model of Sec. III, with V=2Vg and the same isotropic
gaps in both bands.

To illustrate the effects of the interaction anisotropy on
the gap structure, let us consider the following example. In a
cubic crystal with G=O, the SO coupling can be described
by ��k�=	0k. This model is applicable to the
Li2�Pd1−x ,Ptx�3B family of noncentrosymmetric compounds.
The attractive interaction in these materials is likely medi-
ated by phonons,9,27 therefore we neglect spin fluctuations by
setting gsf=0 in expressions �22�, �24�, and �26�. Then,
vg�k ,k��= �gph

2 /2�Dg�k ,k��, vu,ij�k ,k��= �gph
2 /2�Du�k ,k���ij,

and vm,i�k ,k��=0. Using the square-well approximation, one
has
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vg�k,k�� = vg�k,k�����c − ��n�����c − ��n��� ,

vu,ij�k,k�� = vu,ij�k,k�����c − ��n�����c − ��n��� ,

with the momentum dependence inherited from the phonon
propagator. Assuming a spherical Fermi surface and keeping
only the s and p harmonics in the phonon propagator, we
obtain

vg�k,k�� = − Vg,

vu,ij�k,k�� = − Vu�k̂k̂���ij ,

vm,i�k,k�� = 0, �40�

where Vg and Vu are constants. Note that this interaction is
the same as the one considered phenomenologically by Edel-
stein in Ref. 14. From Eq. �32� we obtain the pairing ampli-
tudes in the band representation as follows:

Ṽ����k,k�� = − Vg − ���Vu�k̂k̂��2. �41�

The components of the symmetric tensor k̂ik̂ j transform ac-
cording to the representation A1+E+F2, where A1, E, and F2
are respectively one-, two-, and three-dimensional irreduc-
ible representations of the cubic group O �the notations are
the same as in Ref. 28�. Therefore there are three pairing
channels in the expansion �35�, with the following basis
functions and coupling constants:

V���
A1 = Vg +

1

3
���Vu, �A1

�k� = 1,

V���
E =

2

15
���Vu, �E�k� � �k̂x

2 + �k̂y
2 + �*k̂z

2, k̂x
2 + �*k̂y

2 + �k̂z
2� ,

V���
F2 =

2

15
���Vu, �F2

�k� � �k̂yk̂z, k̂zk̂x, k̂xk̂y� , �42�

where �=exp�2�i /3�.
Since phonons typically lead to a local attraction and can-

not give rise to a substantial k dependence of the interaction,
we expect that the A1 pairing channel dominates. Then the
gap functions in the two bands �Eqs. �36�� are isotropic:


̃��k�=��, and satisfy the equations

�� = �
��

g����T�
n

���

��n
2 + ���

2
, �43�

where g���=V���
A1 N��. The critical temperature is given by

Eq. �37�. The gap magnitudes are not necessarily equal: For
instance, in the vicinity of Tc we find the following expres-
sion for the gap variation between the bands:

r �
�+ − �−

�+ + �−
=

g++ − g−− − 2g−+ + �D
g++ − g−− + 2g−+ + �D

, �44�

where D=��g++−g−−�2+4g+−g−+. Assuming that N+−N− is
small and that Vg�Vu, we have

r �
Vu

6Vg

N+ − N−

NF
. �45�

Thus the gaps are different only if an appreciable p-wave
harmonic is present in the phonon-mediated interaction and
the SO coupling is sufficiently strong to create a considerable
difference between the densities of states in the two bands.

The coupling strengths being the same in both bands is
not a generic situation. In the spirit of the standard model of
two-band superconductivity,13 it is possible that the coupling
constants corresponding to the intraband pairing channels
and the interband pair scattering are all different. To obtain
this we consider a generalization of the model �40� which
includes, along with phonons, also a contribution from spin
fluctuations. In the absence of detailed information about the
phonon and spin-fluctuation spectra in real noncentrosym-
metric materials, in particular in Li2�Pd1−x ,Ptx�3B, we use the
model which includes only the lowest angular harmonics
consistent with the symmetry requirements:

vg�k,k�� = − Vg,

vu,ij�k,k�� = − Vu�k̂k̂���ij − Vu�k̂ik̂ j�,

vm,i�k,k�� = − Vmk̂i. �46�

Here the coefficients Vg and Vu are, in general, different from
those in the model �40�. In the band representation, the pair-
ing amplitudes become

Ṽ����k,k�� = − Vg − ����Vu�k̂k̂��2 + Vu�� − �� + ���Vm.

�47�

There are three pairing channels, corresponding to the A1, E,
and F2 representations; see Eqs. �42�. The coupling constants
in the A1 channel now have the following form:

V���
A1 = Vg +

1

3
���Vu + ���Vu� + �� + ���Vm. �48�

The gap functions are isotropic: 
̃��k�=��, where the ��s
are found from Eqs. �43�. The difference from the previous
case is that now �+��− even if the density of states varia-
tion between the bands is negligible, i.e., N+=N−=NF. As-
suming that Vm is smaller than the other constants �i.e., the
singlet-triplet mixing due to the Dzyaloshinskii-Moriya inter-
action is weak�, we obtain from Eq. �44� that

r �
Vm

Vg − Vu/3 − Vu�
�49�

near the critical temperature.
Finally let us consider the case of p-wave interaction

dominating, which leads to an anisotropic pairing of the F2
symmetry. This happens if Vu is large enough, and the de-
generacy between the F2 and E channels is lifted, e.g., by the
Fermi surface anisotropy. The order parameter has the fol-
lowing form:
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̃��k� = ���1k̂yk̂z + �2k̂zk̂x + �3k̂xk̂y� . �50�

The symmetry of the gap, in particular the location of the
nodes, depends on the relation between the components of �.
There are four stable states of a three-dimensional order pa-
rameter in a cubic crystal:29 �i� �=�0�1,0 ,0�, with two lines
of nodes at kz=0 and ky =0; �ii� �=�0�1, i ,0�, with a line of
nodes at kz=0, and also point nodes at kx=ky =0; �iii� �
=�0�1,1 ,1�, with two lines of nodes at the intersection of the

planes k̂x+ k̂y + k̂z= �1 with the Fermi surface, and also point
nodes at kx=ky =0, ky =kz=0, and kz=kx=0; and �iv� �
=�0�1,� ,�2�, with point nodes at kx=ky =0, ky =kz=0, kz

=kx=0, and kx=ky =kz. For the first three states one would
have cV�T��T2 at low temperatures,30 while for the last one
cV�T��T3.

It is instructive to interpret our results using the spin rep-
resentation of the order parameter:


���k� = ��k��i
̂2��� + d�k��i�̂
̂2���, �51�

where

��k� = −

̃+�k� + 
̃−�k�

2
�52�

is the spin-singlet component, and

d�k� = −

̃+�k� − 
̃−�k�

2
�̂�k� �53�

is the spin-triplet component.12,31 The relative strength of the
triplet and singlet order parameters is controlled by the dif-
ference between �+ and �−: �d� / ���=r; see Eq. �44�. In agree-
ment with Ref. 15, only the component of d�k� which is
parallel to �̂�k� survives �is “protected”� in the limit of large
SO band splitting. However, in the case of a weakly aniso-
tropic phonon-dominated interaction, it follows from expres-
sion �45� that the triplet component is negligibly small. In the
opposite case, when the interaction is strongest in the p-wave
channel, one obtains from Eq. �42� that ��k�=0, i.e., the
pairing is purely triplet.

VI. CONCLUSIONS AND DISCUSSION

We have studied the pairing symmetry in noncentrosym-
metric superconductors with SO splitting of the electron
bands. The pairing interaction is derived using a microscopic
model which includes both phonons and spin fluctuations.
The interband pairing is shown to be absent for any strength
of the SO coupling, if the interaction anisotropy is negligible.
We have analyzed possible gap structures in the strong SO
coupling limit with only intraband pairing and interband pair
scattering present, using a cubic system as an example. If
phonons are dominant, then the superconducting gaps in both
bands are isotropic and nodeless �barring accidental zeros of
the basis function of the unity representation�, but do not
necessarily have the same magnitude.

Let us discuss the application of our results to the non-
centrosymmetric compounds Li2�Pd1−x ,Ptx�3B, where x
ranges from 0 to 1 �Ref. 6�. The critical temperature varies

from 7–8 K for x=0 to 2.2–2.8 K for x=1. The electronic
band structure also exhibits considerable variation: The SO
band splitting in Li2Pd3B is as large as 30 meV, while in
Li2Pt3B it reaches 200 meV �Ref. 9�, which in both cases is
much larger than Tc. Due to the absence of strong correlation
effects and magnetic order, these materials provide a conve-
nient testing ground for theories of noncentrosymmetric su-
perconductivity. Superconducting pairing in Li2Pd3B is due
to the exchange of phonons, and the monotonic, almost lin-
ear, dependence of Tc on the doping level x �Ref. 6� suggests
that it remains phononic for all x from 0 to 1.9,27

Experimental data on the magnetic penetration depth,32

the electronic specific heat,33 and the NMR characteristics,34

all seem to agree that Li2Pd3B is a conventional BCS-like
superconductor with no gap nodes. In contrast, the gap struc-
ture in Li2Pt3B is still a subject of intensive debates. While
earlier experiments, see Refs. 32–34, suggested the presence of
lines of nodes in the gap, the recent �SR and specific heat
data35 have found no evidence of those. Moreover, according
to Ref. 35, the whole Li2�Pd1−x ,Ptx�3B family of compounds
are single-gap isotropic superconductors. This conclusion is
consistent with our results, see Sec. V. Indeed, assuming that
the pairing interaction in Li2�Pd1−x ,Ptx�3B is phononic and
therefore only weakly anisotropic for all x, we obtain that the
A1 channel always dominates, giving rise to nodeless isotro-
pic gaps of essentially equal magnitudes in both bands. In
order to create a noticeable difference between the gap mag-
nitudes, see Eq. �45�, the interaction anisotropy would have
to be very strong: Since �N+−N−� /NF�ESO /�F and varies
from 0.03 in Li2Pd3B to 0.2 in Li2Pt3B, the strength of the
p-wave harmonic must be at least an order of magnitude
larger than that of the s-wave harmonic, which is highly
unlikely for a phonon-mediated interaction.
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APPENDIX: DERIVATION OF EQS. (21)–(26)

Let us start from Eq. �17�, in which we substitute expres-
sions �18� and �19�:

Sint =
1

2�
�
kk�q

�gph
2 �Dg�k,k�� + Du�k,k��������	 + gsf

2 �Dij
g �k,k��

+ Dij
u �k,k�� + ieijlRl�k − k���
��

i 
�	
j �

� ā��k + q�ā��− k�a	�− k��a��k� + q� . �A1�

The q dependence of the fermionic fields plays no role in the
algebraic transformations below; hence we use a shorter ex-
pression on the right-hand side:

Sint →
1

2�
�Ig + Iu + Im� , �A2�

where

GAP STRUCTURE IN NONCENTROSYMMETRIC… PHYSICAL REVIEW B 77, 104520 �2008�

104520-7



Ig =
1

4�
kk�

�gph
2 Dg�k,k�������	 + gsf

2 Dij
g �k,k��
��

i 
�	
j �

� �ā��k�ā��− k� − ā��k�ā��− k��

� �a	�− k��a��k�� − a��− k��a	�k��� ,

Iu =
1

4�
kk�

�gph
2 Du�k,k�������	 + gsf

2 Dij
u �k,k��
��

i 
�	
j �

� �ā��k�ā��− k� + ā��k�ā��− k�� � �a	�− k��a��k��

+ a��− k��a	�k��� ,

Im =
1

8
ieijlgsf

2 �
kk�

��Rl�k − k�� + Rl�k + k���
��
i 
�	

j �

� �ā��k�ā��− k� + ā��k�ā��− k�� � �a	�− k��a��k��

− a��− k��a	�k��� +
1

8
ieijlgsf

2 �
kk�

��Rl�k − k��

− Rl�k + k���
��
i 
�	

j � � �ā��k�ā��− k� − ā��k�ā��− k��

� �a	�− k��a��k�� + a��− k��a	�k��� .

The even in k combinations of the fermionic fields can be
represented as follows:

ā��k�ā��− k� − ā��k�ā��− k�

= − �i
2���
† �i
2���ā��k�ā��− k� ,

a	�− k��a��k�� − a��− k��a	�k��

= − �i
2�	��i
2��

† a��− k��a
�k�� , �A3�

while the odd combinations have the form

ā��k�ā��− k� + ā��k�ā��− k�

= �i
i
2���
† �i
i
2���ā��k�ā��− k� ,

a	�− k��a��k�� + a��− k��a	�k��

= �i
i
2�	��i
i
2��

† a��− k��a
�k�� . �A4�

Using the matrix identities

�����	�i
2���
† �i
2�	� = 2,

�
i����
 j��	�i
2���
† �i
2�	� = − 2�ij ,

�����	�i
i
2���
† �i
 j
2�	� = 2�ij ,

�
i����
 j��	�i
m
2���
† �i
n
2�	� = 2��ij�mn − �im� jn − �in� jm� ,

�
i����
 j��	�i
m
2���
† �i
2�	� = 2ieijm,

�
i����
 j��	�i
2���
† �i
m
2�	� = − 2ieijm, �A5�

we arrive at Eqs. �21�–�26�.
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